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Background and Motivation

I Network-based omics analyses have high potential to capture
signatures of complex biological processes by providing a
perspective for understanding how genes, proteins, or
metabolites are associated in a particular system.

I Gaussian graphical model (GGM) estimation, also known as
partial correlation network estimation, is one approach to such
analyses.

I In the last decade, many open-source R packages have been
published for GGM estimation, each containing one or more
methods for this purpose. Choosing a method typically involves
making several choices with regard to scoring criteria and
estimation algorithms.

I The estimated GGM may be highly sensitive to these choices,
and the relative e�ectiveness of each method may depend on
structural characteristics of the underlying network.

I Here, we compare the performance of several methods within
these packages across a variety of simulated network data,
capturing a range of network topologies.

Interpreting GGMs

I GGMs begin with the assumption that observed data are a
p-dimensional random vector following a multivariate normal
distribution with some covariance matrix Σ. The inverse
covariance matrix, also referred to as the precision matrix, is
typically denoted as Θ = Σ−1 .

I In a GGM for metabolomics data, an edge between two nodes
(metabolites) corresponds to conditional dependence between
the two metabolites conditioned on the rest of the metabolites in
the network. An edge therefore indicates that two metabolites
have an association that cannot be explained through other
metabolites in the network.

I It can be shown that conditional dependence corresponds to
nonzero entries of the inverse covariance, or precision, matrix [1].
Estimating a GGM is therefore equivalent to estimating the
inverse covariance matrix Θ.

R Packages Applied

I The table below contains the methods used in our simulation
study. Regularized methods can be used in the n ≥ p case; others
cannot.

Package Methods Regularized
huge[2] glasso - eBIC[3] Yes

huge glasso - RIC[4] Yes
huge glasso - StARS[5] Yes

hglasso[6] hglasso Yes
bootnet[7] eBIC Yes

bootnet pcor[8, 9, 10] No
bootnet ggmModSelect No
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Study Design

Creating Gold-Standard Network Structures

I We created six gold-standard network structures to simulate
multivariate normal data (Figure 1).

I Three di�erent network topologies (random, small world, and
scale free) were considered along with two density levels (high:
approximately 6% dense, low: approximately 2% dense).

I The igraph package in R was used to create these structures [11].

• The sample_gnp function was used to generate Erdos-Renyi
random networks [12]

• The sample_smallworld function was used for small world
networks [13]

• The sample_pa function was used for Barabasi-Albert scale free
networks [14].

I Networks have 100 nodes (metabolites).

Simulated Network Structures

Figure 1: Six di�erent gold-standard networks used to
generate multivariate normal data for simulation studies.

Performance Metrics
I Frobenius norm of error matrix
• The error matrix was computed as the di�erence between the

adjacency matrix of the estimated GGM and the adjacency
matrix of the true GGM.

• The Frobenius norm (the square root of the sum of squared
elements) of the error matrix was used as a measure of fit.

• A small Frobenius norm indicates good model performance in
the sense that the estimated network is close to the
gold-standard network overall.

I True positive rate (TPR) and false positive rate (FPR)
• Positive edges were defined as those edges corresponding to

partial correlations greater in magnitude than the Fisher
threshold at level U = 0.05; negative edges were defined as
those partial correlations less in magnitude than this
threshold.

• The Fisher threshold for the n = 1000, p = 100 case was 0.062.
For the n = 50, p = 100 case, it was 0.28.

• Good model performance is indicated by a low FPR with a
high TPR, indicating that the method has good sensitivity and
specificity.

Performance of Network Estimation Methods, p < n case
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Figure 2: Simulation study results for n = 1000 and p = 100. Top: boxplots of the Frobenius norm of the
di�erence between the true and estimated networks. Bo�om: sca�erplot of true positive rate vs. false positive
rate, where "positive" is defined as a partial correlation greater in magnitude than 0.062, which is the critical
value for significance level U = 0.05. The star in the upper le� corner indicates the performance of a perfect
edge selection method. The dashed line is the performance expected from a "coin flip" edge selection method.

Performance of Network Estimation Methods, p > n case
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Figure 3: Simulation study results for n = 50 and p = 100. Top: boxplots of the Frobenius norm of the
di�erence between the true and estimated networks. Trivial boxplots (flat lines) correspond to methods which
selected an empty network in every iteration. Bo�om: sca�erplot of true positive rate vs. false positive rate,
where "positive" is defined as a partial correlation greater in magnitude than 0.28, which is the critical value
for significance level U = 0.05. Only estimated networks with at least one positive by this definition are
shown, i.e., only the STaRS method with threshold 0.1 and the hub graphical lasso recovered edges with
magnitude > 0.28. Note that no edge in the gold-standard network for the high-density scale free network
was significant according to this threshold in either the gold-standard or estimated networks, so TPR and FPR
are not shown.

Simulation Results
I Low density vs. high density networks
• Density does not appear to a�ect estimation as much in the p < n case as it does in

the p > n case. In the p > n case, estimation appears slightly worse in the low-density
case than the high-density case for the random and small world se�ings; in the
scale-free se�ing, results are similar for both densities.

I Random vs. small world vs. scale-free networks
• Permutation and subsampling selection criteria (RIC, STaRS) perform well relative to

other methods in random and scale-free networks, but perform worse in small world
networks.

• This may be due to permutation or subsampling approaches failing to preserve the
"shortcuts" that are characteristic in creating the short average path length that is
characteristic of a small-world topology.

• The hub graphical lasso (hglasso [6]) is designed to perform well in networks
expected to have hubs. We see it is far less variable than other methods in the
scale-free se�ing, and has comparable performance to other algorithms in the
low-dimensional case (Figure 2). In the high-dimensional case, variability of hglasso
results is larger, but the method generally outperforms all other methods in terms of
sensitivity and specificity (Figure 3).

Application
I To demonstrate the variation in estimated networks in a real metabolomics se�ing, we

estimated GGMs on metabolomics profiles from a cardiovascular disease metabolomics
study nested within the CATHGEN biorepository. The CATHGEN biorepository consists
of samples collected from 9334 consenting individuals who underwent cardiac
catheterization at Duke University Hospital between 2001 and 2010, with annual
follow-up visits [15]. One goal of assembling the biorepository was to collect molecular
data that could be used to identify biomarkers of cardiovascular disease.

I 136 participants from CATHGEN were selected for this metabolomics study.

I 407 metabolites were measured for each sample. For an illustrative low-dimensional
example, we randomly selected 20 of these metabolites.

I The estimated networks shown below highlight the variation that can be observed from
di�erent methods.

Figure 4: Estimated GGMs for the CATHGEN data, n = 136, p = 20. Red edges correspond to
positive partial correlations; blue, negative. Edge width is proportional to magnitude of partial
correlation.

Figure 5: Estimated GGMs for CATHGEN data, n = 136, p = 407. Edges are interpreted as in Figure
4.

Guidance for Researchers Using GGMs

I These results demonstrate that GGM estimation results vary based on choices such as
method and tuning parameters (which the user can control) and true underlying
topology (which is a priori unknown).

I Exploring multiple methods and using approaches such as bootstrapping should
therefore be an important part of GGM estimation. The bootnet package provides a
convenient framework for such bootstrap analysis [7].

I There are many diverse packages available for GGM estimation in R. Here, we have
explored a subset of the available options that were easiest to access. All packages used
in this analysis were installed directly from CRAN.

I The igraph package provides an easy-to-use interface for constructing networks of
specified topology for the purpose of simulation studies like the work shown here [11].
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