Estimation of Metabolomic Networks with Gaussian Graphical Models
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Background and Motivation Study Desig Performance of Network Estimation Methods, p < n case Simulation Resul

» Low density vs. high density networks

» Network-based omics analyses have high potential to capture
signatures of complex biological processes by providing a
perspective for understanding how genes, proteins, or
metabolites are associated in a particular system.

Random Low Random High Small World Low Small World High Scale Free Low Scale Free High ® Density does not appear to affect estimation as much in the p < n case as it does in
the p > n case. In the p > n case, estimation appears slightly worse in the low-density
case than the high-density case for the random and small world settings; in the
scale-free setting, results are similar for both densities.

Use igraph package to
generate gold-standard
network

» Gaussian graphical model (GGM) estimation, also known as
partial correlation network estimation, is one approach to such

Simulate multivariate normal
data with precision matrix
defined from adjacency

» Random vs. small world vs. scale-free networks
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» In the last decade, many open-source R packages have been s other methods in random and scale-free networks, but perform worse in small world
published for GGM estimation, each containing one or more ] + networks.
methods for this purpose. Choosing a method typically involves Eclimais OOM fom g 5 ** : 1 . :‘I'his may l:e due to permutati‘on'or subsarppling approaches failing to preserve the
making several choices with regard to scoring criteria and g s + I Tﬁhortctut:? tt'hatfare ch?[ractelr(ljstt[c m[ creating the short average path length that is
estimation algorithms. ++ + * + H characteristic of a small-world topology.
pologies
. . . . i - . 1 ® The hub graphical lasso (hglasso [6]) is designed to perform well in networks
» The estimated GGM may be highly sensitive to these choices, Aggeso uaiyot by 1 : .3.‘ bl grap (hg 3 [ 1) e p !
. . Gl el = - ﬁ... expected to have hubs. We see it is far less variable than other methods in the
and the relative effectiveness of each method may depend on NIWrK 0 ol stande: o- . i X
newerk scale-free setting, and has comparable performance to other algorithms in the

structural characteristics of the underlying network. . . . . ; ] e
method M opiEbicos M opRic B opiStarso1 W opiSiars0.05 W optiigiasso W opinEBIC M optonpcor W optbnggmModSelect low-dimensional case (Figure 2). In the high-dimensional case, variability of hglasso

» Here, we compare the performance of several methods within results is larger, but the method generally outperforms all other methods in terms of
these packages across a variety of simulated network data, sensitivity and specificity (Figure 3).

capturing a range of network topologies. . _
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8! /// L ; /// /// J » To demonstrate the variation in estimated networks in a real metabolomics setting, we
» GGMs begin with the assumption that observed data are a » Three different network topologies (random, small world, and o / o J o’ ) o J e | S of! A estimated GGMs on metabolomics profiles from a cardiovascular disease metabolomics
p-dimensional random vector following a multivariate normal scale free) were considered along with two density levels (high: £ 5 £ e g / | 4 // - // | 4 // study nested within the CATHGEN biorepository. The CATHGEN biorepository consists
distribution with some covariance matrix . The inverse approximately 6% dense, low: approximately 2% dense). 3 ‘ // 3 : // M /// 3 o 3 // 3 // of samples collected from 9334 consenting individuals who underwent cardiac
cov'ariance matrix, also refeﬁr{ed to as the precision matrix, is > The igraph package in R was used to create these structures [11]. . // Ji /,’ . ! // Al // . // A // catheterization at Duke University Hospital between 2001 and 2010, with annual
typically denoted as © = =7 . ) . =K 2 I °l =l 9 . follow-up visits [15]. One goal of assembling the biorepository was to collect molecular
® The sample_gnp function was used to generate Erdos-Renyi / PR ,/ PR 7 PR / EPR o EPR L PR f I : ;
> Ina GGM for metabolomics data, an edge between two nodes random networks [12] ol o/ <l <l ol sl data that could be used to identify biomarkers of cardiovascular disease.
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the two metabolites conditioned on the rest of the metabolites in
the network. An edge therefore indicates that two metabolites nEtWO”kS [13] ; » X b e » 407 metabolites were measured for each sample. For an illustrative low-dimensional
0 ® The 1 nction was used for Barabasi-Albert scale free - . . . i
s o e e i ot e gl i offir net\:;:;fs F;Zi unction was u ' Figure 2: Simulation study results for n = 1000 and p = 100. Top: boxplots of the Frobenius norm of the example, we randomly selected 20 of these metabolites.
metabolites in the network. N M— boli difference between the true and estimated networks. Bottom: scatterplot of true positive rate vs. false positive » The estimated networks shown below highlight the variation that can be observed from
» Networks have 100 nodes (metabolites). ang . . o " q 2 ik 8 on A
Bl Hcaniberehownlthatconditionalldependencelconesnondsito ( ) rate, where "positive" is defined as a partial correlation greater in magnitude than 0.062, which is the critical different methods.
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Estimating a GGM is therefore equivalent to estimating the
inverse covariance matrix ©.

- Random Graph Low Density Sm‘nllwor\d.LowDensuy Scale Free Low Density Performance Of Network Estimation Methods, p > n Case
R Packages Applied :

edge selection method. The dashed line is the performance expected from a "coin flip" edge selection method.
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