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Undirected Graphical Models

Nodes:
Random
variables

Edges:
Pairwise measure

of relationship
between nodes

Figure 1: An undirected graphical model consists of a set of nodes and edges
capturing relationships between the nodes.
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The Gaussian Graphical Model

@ Suppose our random variables have the distribution

X = (X1,...,Xp) ~ MVN(, T) (1)
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The Gaussian Graphical Model

@ Suppose our random variables have the distribution

X = (X1,...,Xp) ~ MVN(, T) (1)

@ Construct an undirected graphical model where edge weights
correspond to partial correlations:

COV[X,',)<J'|X_,'J']
V Var[Xi Xl Var[X;|1X_j]
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PXi. XiIV\{X:.X;} =

Kate Shutta (kshutta@umass.edu) 3/23



The Gaussian Graphical Model

@ Suppose our random variables have the distribution

X = (X, ..., Xp) ~ MVN(p, 5) (1)
@ Construct an undirected graphical model where edge weights
correspond to partial correlations:
Cov[X;, X)1X_y]
V Var[Xi Xl Var[X;|1X_j]

@ Absence of an edge means zero partial correlation < conditional
independence in the Gaussian setting

()

PXi. XiIV\{X:.X;} =
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Conditional Independence in GGMs

SRR LY

Figure 2: In GGMs, we have the property that X; L Xj|V\{X;, Xj}. For example,
in this model, X, and X, are conditionally independent given X; and X3.

Kate Shutta (kshutta@umass.edu) 4 /23



GGM Estimation with the Graphical LASSO

Hastie, Friedman, and Tibshirani, 2008 1

Assume X1, ..., X, ~ MVN(u, ©71), where © is the inverse
covariance (precision) matrix

Estimate ©, then convert to GGM using the well-known relationship:
Oj
PX;,X; WXt T T T a3 3
XXX} = s (3)

Consider the penalized log likelihood for parameter © and sample
covariance S:

U(O) = log|©] — tr(S©) — \||O||1 (4)

e Maximization of (4) with respect to © yields a sparse estimated
precision matrix

'Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3), 432-441.
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No shortage of ways to fit a model!

R Package Algorithm Criterion | Hyperparameters | Regularized
huge glasso eBIC v=0.5 yes
huge glasso eBIC y=0 yes
huge glasso RIC n/a yes
huge glasso StARS thres = 0.1 yes
huge glasso StARS thres = 0.05 yes
hglasso hglasso BIC-type n/a yes
qgraph EBICglasso eBIC v=0.5 yes
qgraph EBICglasso eBIC vy=0 yes

base MLE n/a n/a no

Table 1: An example of some of the available methods for GGM estimation.
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Motivation for Ensemble Model

glasso - ebic - 0 glasso - ebic - 0.5 glasso - ric hglasso

qgraph - ebic - 0.5

Figure 3: 8 different methods were used to fit GGMs to 14 genes from an ovarian
carcinoma gene set? using data from the curatedOvarianData R package?.

2Kghler et al. (2021), HPO term HP:0025318
3Ganzfried et al. (2013)
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So ... What's a researcher to do?

@ In our experience, no single estimation method seems to systematically
outperform the others

@ Performance of an estimation method appears to depend on network
topology, which is a priori unknown

@ Results may be highly variable to the selected method, which has
implications for practical interpretation

@ A researcher is left to make their best guess about which method to
use

Can we find a data-adaptive way to combine the methods,
forming an ensemble network estimate and removing the
guesswork from the process?
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Combining Methods to Improve Model

@ Suppose we try M different network estimation methods and attain
estimates ©1,...,0uy

@ Our general question is: can a convex combination of these can do at
least as well as each method alone, and perhaps do even better?

M
E[@]:alél—l—agéz—l—---—i-aMéM;Za;:1,04;20 (5)
i=1
@ Van der Laan et al. have shown that the answer to this question is, in
certain cases, yes! 4

*Van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super Learner.



The SpiderLearner Estimator

M
és;_:d1é1+6¢2é2+"'+6¢/\//é/\//;z&,‘=1;64,'ZO (6)
i=1

o The estimates ©1, ..., have already been learned from the data,
using one of the M candidate methods

@ To construct the estimator, we just need to obtain the estimated
coefficients a1, ...,y

@ This is done through a likelihood-based cross-validation approach

Kate Shutta (kshutta@umass.edu) 10 / 23



5-fold CV Example

Figure 4: We begin by partitioning the data into five non-overlapping folds.
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5-fold CV Example

glasso

y A (1
e I

Figure 5: Next, we hold Fold 1 out of the data and train network estimates on

Folds 2-5. The notation (:)(21), for example, refers to the network estimated by
Method 2 (glasso with RIC) when leaving Fold 1 out of the dataset.
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5-fold CV Example

Figure 6: We repeat this process across all five fo
network estimates @Ek); i=1,...,4,k=1,...,5.
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5-fold CV Example
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eBIC

glasso
with
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hub
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Figure 7: For each input «, we can calculate the likelihood of the test data given
the estimates.
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ld CV Example
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Figure 8: We repeat this process across all folds, and average the results to
calculate the objective function. The estimates & are then found by maximizing
this function with respect to .
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Simulation Study Design

@ Sample size and number of predictors:

Simulation | n p m  (4/5%n)/m Dimensionality
A 10,000 50 1275 6.275 Low
B 1,600 50 1275 1.004 Low
C 100 50 1275 0.0627 High
D 60 100 5050 0.0079 High

o Network topologies:

e Random

e Small world

o Scale-free

e Hub-and-spoke

@ Densities: Low (6% dense), high (20% dense)
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Simulation Study Error Metrics

o Relative Frobenius norm (RFN) of error matrix: how far off is the
estimated precision matrix from the true, gold-standard precision

matrix?
o = (7)
|AllF = (8)
RFN = 9)

@ Out-of-sample likelihood: for a new, independent sample Xiesr from
the same data-generating distribution, what is the likelihood of the
estimate Qg ?

N n N 1 n N
UOst) x 7 log(|Os1]) — 5 ;X:e-st,ieﬂxtest,i (10)
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Ensemble Model Results
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Takeaway from Simulation

@ In both low-dimensional and high-dimensional cases, and under a wide
range of gold-standard network topologies, SpiderLearner is able to
perform as well as, or better than, the best candidate method

@ SpiderLearner also outperforms a simple mean of the candidate
methods

@ Using SpiderLearner is a practical way to optimize the complicated
decision-making process of selecting a method for GGM estimation
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Implementation as Open-Source Software

@ Code and examples (in alpha stage) available at
https://github.com/katehoffshutta/SpiderLearner

@ SpiderLearner flexibly accommodates user-defined GGM estimation
methods with an object-oriented programming structure

e Any function that takes in multivariate data and outputs a matrix can
be implemented as a Candidate subclass

@ On a Macbook Air using one core, the runtime for estimating one
ensemble model with 9 candidate methods on an
n =260, p = 114, m = 6786 dataset is around 10 minutes (K=10
folds).

o Parallel processing option is available to decrease runtime of K-fold
cross-validation
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Work in Progress

Methods
@ Investigate variability of estimated networks
@ Assess asymptotic properties of the estimator

@ Develop rules of thumb for choosing the number of folds and the
library of candidate methods

Software

o Add additional features such as bootstrap-based confidence intervals
for each estimated edge weight

o Beta testing

@ Publish and maintain the code as an R package
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