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Undirected Graphical ModelsUndirected Graphical Model

Nodes:
Random 
variables 

Edges:
Pairwise measure 
of relationship 
between nodes

Figure 1: An undirected graphical model consists of a set of nodes and edges

capturing relationships between the nodes.
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The Gaussian Graphical Model

Suppose our random variables have the distribution

X = (X1, . . . ,XP) ⇠ MVN(µ,⌃) (1)

Construct an undirected graphical model where edge weights
correspond to partial correlations:

⇢Xi ,Xj |V \{Xi ,Xj} =
Cov [Xi ,Xj |X�ij ]p

Var [Xi |X�ij ]
p

Var [Xj |X�ij ]
(2)

Absence of an edge means zero partial correlation () conditional
independence in the Gaussian setting
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Conditional Independence in GGMs

Undirected Graphical Model with Local Markov 
Property

X1

X2

X3

X4

X1X4X2 X3

● The absence of an edge between two nodes 
indicates that they are conditionally independent 
given the other nodes in the graph 

⇒

Figure 2: In GGMs, we have the property that Xi ? Xj |V \{Xi ,Xj}. For example,

in this model, X2 and X4 are conditionally independent given X1 and X3.
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GGM Estimation with the Graphical LASSO

Hastie, Friedman, and Tibshirani, 2008 1

Assume X1, . . . ,Xn ⇠ MVN(µ,⇥�1), where ⇥ is the inverse
covariance (precision) matrix
Estimate ⇥, then convert to GGM using the well-known relationship:

⇢Xi ,Xj |V \{Xi ,Xj} = �
⇥ijp
⇥ii⇥jj

(3)

Consider the penalized log likelihood for parameter ⇥ and sample
covariance S :

`(⇥) = log |⇥|� tr(S⇥)� �||⇥||1 (4)

Maximization of (4) with respect to ⇥ yields a sparse estimated
precision matrix

1Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3), 432-441.
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No shortage of ways to fit a model!

R Package Algorithm Criterion Hyperparameters Regularized

huge glasso eBIC � = 0.5 yes

huge glasso eBIC � = 0 yes

huge glasso RIC n/a yes

huge glasso StARS thres = 0.1 yes

huge glasso StARS thres = 0.05 yes

hglasso hglasso BIC-type n/a yes

qgraph EBICglasso eBIC � = 0.5 yes

qgraph EBICglasso eBIC � = 0 yes

base MLE n/a n/a no

Table 1: An example of some of the available methods for GGM estimation.
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Motivation for Ensemble Model

glasso − ebic − 0 glasso − ebic − 0.5 glasso − ric hglasso

glasso − stars − 0.05 glasso − stars − 0.1 qgraph − ebic − 0 qgraph − ebic − 0.5

Figure 3: 8 different methods were used to fit GGMs to 14 genes from an ovarian

carcinoma gene set
2

using data from the curatedOvarianData R package
3
.

2Köhler et al. (2021), HPO term HP:0025318
3Ganzfried et al. (2013)
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So ... What’s a researcher to do?

In our experience, no single estimation method seems to systematically
outperform the others
Performance of an estimation method appears to depend on network
topology, which is a priori unknown
Results may be highly variable to the selected method, which has
implications for practical interpretation
A researcher is left to make their best guess about which method to
use

Can we find a data-adaptive way to combine the methods,

forming an ensemble network estimate and removing the

guesswork from the process?
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Combining Methods to Improve Model

Suppose we try M different network estimation methods and attain
estimates ⇥̂1, . . . , ⇥̂M

Our general question is: can a convex combination of these can do at
least as well as each method alone, and perhaps do even better?

E [⇥] = ↵1⇥̂1 + ↵2⇥̂2 + · · ·+ ↵M⇥̂M ;
MX

i=1

↵i = 1,↵i � 0 (5)

Van der Laan et al. have shown that the answer to this question is, in
certain cases, yes! 4

4Van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super Learner.
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The SpiderLearner Estimator

⇥̂SL = ↵̂1⇥̂1 + ↵̂2⇥̂2 + · · ·+ ↵̂M⇥̂M ;
MX

i=1

↵̂i = 1; ↵̂i � 0 (6)

The estimates ⇥̂1, . . . , ⇥̂M have already been learned from the data,
using one of the M candidate methods
To construct the estimator, we just need to obtain the estimated
coefficients ↵̂1, . . . , ↵̂M

This is done through a likelihood-based cross-validation approach
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5-fold CV Example

Partition data into five non-overlapping folds

Figure 4: We begin by partitioning the data into five non-overlapping folds.
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5-fold CV Example

Hold Fold 1 out of the data, and train networks on Folds 2-5.

glasso 
with
eBIC

glasso 
with
RIC

glasso 
with

StARS

hub 
glasso

Figure 5: Next, we hold Fold 1 out of the data and train network estimates on

Folds 2-5. The notation ⇥̂(1)
2 , for example, refers to the network estimated by

Method 2 (glasso with RIC) when leaving Fold 1 out of the dataset.
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5-fold CV Example

Repeat for all the folds to get an array of estimated networks

4 methods x 5 folds = 20 estimates

Figure 6: We repeat this process across all five folds, obtaining a 4 ⇥ 5 array of

network estimates ⇥(k)
i ; i = 1, . . . , 4; k = 1, . . . , 5.
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5-fold CV Example

For input alpha, find likelihood of test data given estimates

glasso 
with
eBIC

glasso 
with
RIC

glasso 
with

StARS

hub 
glasso

P(      |       ) 

Figure 7: For each input ↵, we can calculate the likelihood of the test data given

the estimates.
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5-fold CV Example

Figure 8: We repeat this process across all folds, and average the results to

calculate the objective function. The estimates ↵̂ are then found by maximizing

this function with respect to ↵.
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Simulation Study Design

Sample size and number of predictors:
Simulation n p m (4/5 ⇤ n)/m Dimensionality

A 10,000 50 1275 6.275 Low
B 1,600 50 1275 1.004 Low
C 100 50 1275 0.0627 High
D 60 100 5050 0.0079 High

Network topologies:
Random

Small world

Scale-free

Hub-and-spoke

Densities: Low (6% dense), high (20% dense)
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Simulation Study Error Metrics

Relative Frobenius norm (RFN) of error matrix: how far off is the
estimated precision matrix from the true, gold-standard precision
matrix?

�ij = ✓̂SL,ij � ✓ij (7)

||�||F =

vuut
pX

i=1

pX

j=1

�2

ij (8)

RFN =
||�||F
||⇥||F

(9)

Out-of-sample likelihood: for a new, independent sample Xtest from
the same data-generating distribution, what is the likelihood of the
estimate ⇥̂SL?

`(⇥̂SL) /
n

2
log(|⇥̂SL|)�

1
2

nX

i=1

XT
test,i ⇥̂SLXtest,i (10)
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Ensemble Model Results: RFN
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Ensemble Model Results: Out-of-sample Likelihood
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Takeaway from Simulation

In both low-dimensional and high-dimensional cases, and under a wide
range of gold-standard network topologies, SpiderLearner is able to
perform as well as, or better than, the best candidate method

SpiderLearner also outperforms a simple mean of the candidate
methods

Using SpiderLearner is a practical way to optimize the complicated
decision-making process of selecting a method for GGM estimation
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Implementation as Open-Source Software

Code and examples (in alpha stage) available at
https://github.com/katehoffshutta/SpiderLearner

SpiderLearner flexibly accommodates user-defined GGM estimation
methods with an object-oriented programming structure

Any function that takes in multivariate data and outputs a matrix can

be implemented as a Candidate subclass

On a Macbook Air using one core, the runtime for estimating one
ensemble model with 9 candidate methods on an
n = 260, p = 114,m = 6786 dataset is around 10 minutes (K=10
folds).

Parallel processing option is available to decrease runtime of K-fold
cross-validation
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Work in Progress

Methods
Investigate variability of estimated networks
Assess asymptotic properties of the estimator
Develop rules of thumb for choosing the number of folds and the
library of candidate methods

Software
Add additional features such as bootstrap-based confidence intervals
for each estimated edge weight
Beta testing
Publish and maintain the code as an R package
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Questions?
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