Estimation of Metabolomic Networks with Gaussian Graphical Models

Katherine H. Shutta*1, Subhajit Naskar*1, Kathryn M. Rexrode ${ }^{2}$,

Denise M. Scholtens ${ }^{3}$, and Raji Balasubramanian ${ }^{1}$

*Joint ${ }^{1}$ University of Massachusetts, Amherst ${ }^{2}$ Brigham and Women's Hospital, Harvard Medical School
${ }^{3}$ Northwestern University Feinberg School of Medicine.

Abstract

- Network-based metabolomic analyses have high potential to capture signatures of complex biological processes [1].
- Gaussian graphical model (GGM) estimation is one approach to network estimation. Recently, several open-source R packages have been developed for this purpose $[2,3]$.
- GGM estimation involves several choices with regard to scoring criteria, precision matrix estimation algorithms, and data transformations.
- We present results from a simulation study designed to investigate these choices, with the goal of providing practical guidance to researchers applying GGM approaches to metabolomic data.

GGM vs Correlation Network

A Gaussian graphical model begins with the assumption an p-dimensional random vector of metabolite measurements that follows the multivariate normal distribution [4].

$$
\begin{equation*}
\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right) \sim M V N(\underline{\mu}, \boldsymbol{\Sigma}) \tag{1}
\end{equation*}
$$

In this setting, $\underline{\mu}=\underline{0}$ and $\boldsymbol{\Sigma}$ represents the between-metabolite covariance matrix. Under the MVN assumption, this framework allows us to estimate two different types of networks:

Correlation network (Edges from $\boldsymbol{\Sigma}$)

- $X_{i} \perp X_{j} \Longleftrightarrow \boldsymbol{\Sigma}_{i, j}=0$
- Edges correspond to pairwise dependence
- This marginal dependence may be able to be explained by other metabolites in the network
GGM network (Edges from $\boldsymbol{\Sigma}^{-1}$)
- $X_{i} \perp X_{j} \mid\left\{X_{k \neq i, j}\right\} \Longleftrightarrow \boldsymbol{\Sigma}^{-\mathbf{1}}{ }_{i, j}=0$
- Edges correspond to conditional dependence
- This dependence is conditioned on the state of the rest of the network metabolites
- The observed relationship between two metabolites cannot be explained through any of the other metabolites in the network

Algorithms

- Meinshausen-Bühlmann (mb): uses penalized regression to model each individual metabolite on the others in the network [5]
- Correlation Thresholding (ct): applies a threshold to the correlation matrix
- Graphical LASSO (glasso): uses penalized regression to estimate a sparse inverse covariance matrix [2]

Scoring Criteria

- Rotation Information Criterion (ric): estimates optimal tuning parameter by permutation-based approach [6]
- Stability Approach to Regularization Selection (StARS): estimates optimal tuning parameter by subsampling approach [7]

Funding

Research reported in this poster was supported by the National Institutes of Health under award number 1R01HL122241-01A1

As a gold standard for reference, we generated 3 precision matrices corresponding to random graphs using the Erdos-Renyi trices corresponding to random graphs using
random graph generation process in igraph $[8]$. The sparsities
modeled were high (edge probability 0.01), medium(0.025), and low(0.1). For chosen simulation settings (e.g., in the highlighted example, a low sparsity matrix estimated with the glasso algorithm and scored with StARS), we repeated the following 100 times:

1. Draw 100 samples from the $\operatorname{MVN}(\underline{0}, \boldsymbol{\Sigma})$ distribution
2. Obtain the 400×400 sample covariance matrix

Apply the chosen algorithm and scoring criterion to obtain an estimated adjacency matrix
4. Compare the estimated adjacency matrix to the goldstandard precision matrix $\boldsymbol{\Sigma}^{-1}$ from which the data standard precisi
were generated

Edge Recovery Performance

With three estimation algorithms and two scoring criteria, we studied a total of six network estimation approaches for each sparsity level. To assess the sensitivity and specificity of each algorithm and criterion combination, the following definitions were used (where $\boldsymbol{\Sigma}^{-1}$ is the gold-standard precision matrix for the simulation):

True Positive: an edge in $\boldsymbol{\Sigma}^{-1}$ with magnitude of conditional correlation $>\rho^{*} \approx 0.2$ that was detected by the estimation. (ρ^{*} is the threshold for significance testing of null
hypothesis $\rho=0$ at $\alpha=0.05$ for a sample of size $n=100$) hypothesis $\rho=0$ at $\alpha=0.05$ for a sample of size $n=100$.) True Negative: an edge in Σ^{-1} with magnitude of conditional correlation exactly 0 that was not detected by the estimation.

False Positive: an edge detected in the estimation which has
weight exactly 0 in $\boldsymbol{\Sigma}^{-1}$
False Negative: an edge not detected in the estimation that has absolute weight $>\rho^{*}$ in $\boldsymbol{\Sigma}^{-1}$
Edges in the gold-standard precision matrix with absolute edge weight between 0 and ρ^{*} were not considered in this analysis.

Application: CATHGEN

We used the three algorithms and two criteria to fit six estimated networks for a dataset of targeted metabolomic data from the CATHGEN Biorepository [9]. The estimated topologies varied depending on choice of algorithm. Not shown are the MB-StARS and CT StARS estimated networks; almost no edges were esti mated for these approaches

The table below shows the edge count for each approach

	MB	CT	glasso
RIC	610	4530	2542
StARS	0	1	6045

Conclusion

Estimated GGMs can vary broadly depending on method, and this variability may depend on network topology. Cross-validation and sensitivity analyses are recommended.

References

[^0]
[^0]: A Rosato, L Tenori, M Cascante, PR De Atauri Carulla, VAP Mar-
 tins Dos Santos, and E. Saccenti. From correlation to causation: analysis of metabolomics data using systems biology approaches.
 Metabolomics, $(14(4)): 37,2018$.

 J Friedman, T Hastie, and R Tibshirani. Sparse inverse covariance
 estimation with the graphical lasso. Biostatistics, ($9(3)): 432-41$,
 2018.
 Roeder K Lafferty J Wasserman L Zhao T, Liu H. The huge Jor

 Roeder K Lafferty J Wasserman L Zhao T, Liu H. The huge pack
 age for high-dimensional undirected graph estimation in r. Jour
 nal of Machine Learning Research, (13):1059-1062, 2012.
 \qquad
 geometric perspective. 2017.
 Nicolai Meinshausen and Peter Bühlmann.
 graphs and variable selection with the lasso. Annals of Stations
 tics, $34: 1436-1462,2006$. graphs and variable sel
 tics, $34: 1436-1462,2006$.
 Lysen Shaun. Permuted inclusion criterion: A variable select
 technique. Publicly Accessible Penn Dissertations, 28, 2009.
 Roeder K Liu H and Wasserman L. Stability approach to regularization selection for high dimensional graphical mo
 in Neural Information Processing Systems, 2010 .
 Gabor Csardi and Tamas Nepusz. The igraph software package for
 complex network research. InterJournal, Complex Systems:1695,
 2006.
 WE Kraus, CB Granger, MH SketchJr, MP Donahue, GS Gins-
 burg, ER Hauser, C Haynes, LK Newby, M Hurdle, ZE Dowdy, burg, ER Hauser, C Haynes, LK Newby, M Hurdle, ZE Dowdy,
 and SH Shah. A guide for a cardiovascular genomics biorepository: Research, 8(8):449-57, 2015 .

