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Abstract Simulated Networks

e Network-based metabolomic analyses have

. . . o Mot . modeled were high (edge probability 0.01), medium(0.025),
high potential to capture signatures of com- Sparsity | | Sparsity | | Sparsity and low(0.1). For chosen simulation settings (e.g., in the
plex biological processes [1]. TN highlighted example, a low sparsity matrix estimated with

. . . . P T~ the glasso algorithm and scored with StARS), we repeated
Gaussian graphical model (GGM) estimation - — the following 100 times:

1s one approach to network estimation. Re- Meinshausen-Buhimann Correlation Thresholding Graphical LASSO
(ME) (CT) (glasso)

cently, several open-source R packages have

been developed for this purpose |2, 3|.

1. Draw 100 samples from the MV N (0, 3) distribution

= .'. 2. Obtain the 400 x 400 sample covariance matrix
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Stability Approach to
Regulation Selection
(StARS)

GGM estimation involves several choices with
regard to scoring criteria, precision matrix
estimation algorithms, and data transforma-

Rotation Information 3

Criterion (RIC) Apply the chosen algorithm and scoring criterion to

obtain an estimated adjacency matrix

As a gold standard for reference, we generated 3 precision ma- 4. Compare the estimated adjacency matrix to the gold-
tions. trices corresponding to random graphs using the Erdos-Renyi standard precision matrix X! from which the data
random graph generation process in igraph [8|. The sparsities were generated

We present results from a simulation study
designed to investigate these choices, with
the goal of providing practical guidance to
researchers applying GGM approaches to
metabolomic data.

Edge Recovery Performance

With three estimation algorithms and two scoring criteria, we studied a total of six network estimation approaches for
each sparsity level. To assess the sensitivity and specificity of each algorithm and criterion combination, the following
definitions were used (where 71! is the gold-standard precision matrix for the simulation):

GGM vs Correlation Network
True Positive: an edge in X! with magnitude of condi- False Positive: an edge detected in the estimation which has

A Gaussian graphical model begins with the tional correlation > p* & 0.2 that was detected by the esti- weight exactly 0 in 371,
: : : mation. (p”~ is the threshold for significance testing of null False Negative: an edge not detected in the estimation that
assumption an p-dimensional random vector of

. . . hypothesis p = 0 at @ = 0.05 for a sample of size n = 100.) has absolute weight > p* in X7 1.
metabolite measurements that follows the multivari- True Negative: an edge in ¥~ ! with magnitude of con- Edges in the gold-standard precision matrix with absolute

ate normal distribution [4] ditional correlation exactly 0 that was not detected by the edge weight between 0 and p™ were not considered in this
estimation. analysis.
X = (X1,...,X,) ~ MVN(u, =) (1)
In this setting, 4 = 0 and 3 represents the Low Sparsity Medium Sparsity High Sparsity
between-metabolite covariance matrix. Under the
MVN assumption, this framework allows us to 0 { ! 0 o
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EdgeS COITeSpOnd to Condltlonal dependence e Both CT approaches detected a very @ Performance is comparable among all e StARS criterion has higher sensitivity
small number of edges and are not methods with the exception of CT- and lower specificity than RIC
This dependence is conditioned on the state shown (TPR, FPR ~ 0) StARS e Difference in criterion has more im-
. . e StARS criterion has lower sensitivity e CT-StARS detects a very small num- pact than difference in algorithm
- criterion for both the MB and glasso
The observed relationship between two algorithms

metabolites cannot be explained through any

of the other metabolites in the network Appllcatlon CATHGEN Conclusion

We used the three algorithms and two criteria to Estimated GGMs can vary broadly depending on
Algorithms fit six estimated networks for a dataset of targeted

metabolomic data from the CATHGEN Biorepository

e Meinshausen-Biithlmann (mb): uses penal- |9]. The estimated topologies varied depending on choice

: : Co1e . . of algorithm. Not shown are the MB-StARS and CT- are recommended.
ized regression to model each individual

. . _ StARS estimated networks; almost no edges were esti-
metabolite on the others in the network |5 mated for these approaches.

method, and this variability may depend on network
topology. Cross-validation and sensitivity analyses
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