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Abstract
• Network-based metabolomic analyses have

high potential to capture signatures of com-
plex biological processes [1].

• Gaussian graphical model (GGM) estimation
is one approach to network estimation. Re-
cently, several open-source R packages have
been developed for this purpose [2, 3].

• GGM estimation involves several choices with
regard to scoring criteria, precision matrix
estimation algorithms, and data transforma-
tions.

• We present results from a simulation study
designed to investigate these choices, with
the goal of providing practical guidance to
researchers applying GGM approaches to
metabolomic data.

GGM vs Correlation Network
A Gaussian graphical model begins with the
assumption an p-dimensional random vector of
metabolite measurements that follows the multivari-
ate normal distribution [4].

X = (X1, . . . , Xp) ∼MVN(µ,Σ) (1)

In this setting, µ = 0 and Σ represents the
between-metabolite covariance matrix. Under the
MVN assumption, this framework allows us to
estimate two different types of networks:

Correlation network (Edges from Σ)

• Xi ⊥ Xj ⇐⇒ Σi,j = 0

• Edges correspond to pairwise dependence

• This marginal dependence may be able to be
explained by other metabolites in the network

GGM network (Edges from Σ−1)

• Xi ⊥ Xj |{Xk 6=i,j} ⇐⇒ Σ−1
i,j = 0

• Edges correspond to conditional dependence

• This dependence is conditioned on the state
of the rest of the network metabolites

• The observed relationship between two
metabolites cannot be explained through any
of the other metabolites in the network

Algorithms
• Meinshausen-Bühlmann (mb): uses penal-

ized regression to model each individual
metabolite on the others in the network [5]

• Correlation Thresholding (ct): applies a
threshold to the correlation matrix

• Graphical LASSO (glasso): uses penalized
regression to estimate a sparse inverse co-
variance matrix [2]

Scoring Criteria
• Rotation Information Criterion (ric): es-

timates optimal tuning parameter by
permutation-based approach [6]

• Stability Approach to Regularization Se-
lection (StARS): estimates optimal tuning
parameter by subsampling approach [7]
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Simulated Networks

As a gold standard for reference, we generated 3 precision ma-
trices corresponding to random graphs using the Erdos-Renyi
random graph generation process in igraph [8]. The sparsities

modeled were high (edge probability 0.01), medium(0.025),
and low(0.1). For chosen simulation settings (e.g., in the
highlighted example, a low sparsity matrix estimated with
the glasso algorithm and scored with StARS), we repeated
the following 100 times:

1. Draw 100 samples from the MVN(0,Σ) distribution

2. Obtain the 400 x 400 sample covariance matrix

3. Apply the chosen algorithm and scoring criterion to
obtain an estimated adjacency matrix

4. Compare the estimated adjacency matrix to the gold-
standard precision matrix Σ−1 from which the data
were generated

Edge Recovery Performance
With three estimation algorithms and two scoring criteria, we studied a total of six network estimation approaches for
each sparsity level. To assess the sensitivity and specificity of each algorithm and criterion combination, the following
definitions were used (where Σ−1 is the gold-standard precision matrix for the simulation):

True Positive: an edge in Σ−1 with magnitude of condi-
tional correlation > ρ∗ ≈ 0.2 that was detected by the esti-
mation. (ρ∗ is the threshold for significance testing of null
hypothesis ρ = 0 at α = 0.05 for a sample of size n = 100.)
True Negative: an edge in Σ−1 with magnitude of con-
ditional correlation exactly 0 that was not detected by the
estimation.

False Positive: an edge detected in the estimation which has
weight exactly 0 in Σ−1.
False Negative: an edge not detected in the estimation that
has absolute weight > ρ∗ in Σ−1.
Edges in the gold-standard precision matrix with absolute
edge weight between 0 and ρ∗ were not considered in this
analysis.
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Low sparsity network
• Both CT approaches detected a very

small number of edges and are not
shown (TPR, FPR ≈ 0)

• StARS criterion has lower sensitivity
and higher specificity than the RIC
criterion for both the MB and glasso
algorithms

Medium sparsity network
• Performance is comparable among all

methods with the exception of CT-
StARS

• CT-StARS detects a very small num-
ber of edges and is not shown

High sparsity network
• StARS criterion has higher sensitivity

and lower specificity than RIC
• Difference in criterion has more im-

pact than difference in algorithm

Application: CATHGEN
We used the three algorithms and two criteria to
fit six estimated networks for a dataset of targeted
metabolomic data from the CATHGEN Biorepository
[9]. The estimated topologies varied depending on choice
of algorithm. Not shown are the MB-StARS and CT-
StARS estimated networks; almost no edges were esti-
mated for these approaches.
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The table below shows the edge count for each approach.

MB CT glasso
RIC 610 4530 2542

StARS 0 1 6045

Conclusion
Estimated GGMs can vary broadly depending on
method, and this variability may depend on network
topology. Cross-validation and sensitivity analyses
are recommended.
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