Estimation of Metabolomic Networks with Gaussian Graphical Models

Katherine H. Shutta^{*1}, Subhajit Naskar^{*1}, Kathryn M. Rexrode², Denise M. Scholtens³, and Raji Balasubramanian¹ *Joint ¹University of Massachusetts, Amherst ²Brigham and Women's Hospital, Harvard Medical School ³Northwestern University Feinberg School of Medicine.

Abstract

- Network-based metabolomic analyses have high potential to capture signatures of complex biological processes [1].
- Gaussian graphical model (GGM) estimation is one approach to network estimation. Recently, several open-source R packages have been developed for this purpose [2,3].
- GGM estimation involves several choices with regard to scoring criteria, precision matrix estimation algorithms, and data transformations.
- We present results from a simulation study designed to investigate these choices, with the goal of providing practical guidance to researchers applying GGM approaches to metabolomic data.

Simulated Networks

As a gold standard for reference, we generated 3 precision matrices corresponding to random graphs using the Erdos-Renyi random graph generation process in **igraph** [8]. The sparsities UMASS AMHERST School of Health Sciences

modeled were high (edge probability 0.01), medium(0.025), and low(0.1). For chosen simulation settings (e.g., in the highlighted example, a low sparsity matrix estimated with the glasso algorithm and scored with StARS), we repeated the following 100 times:

- 1. Draw 100 samples from the $MVN(\underline{0}, \Sigma)$ distribution
- 2. Obtain the $400 \ge 400$ sample covariance matrix
- 3. Apply the chosen algorithm and scoring criterion to obtain an estimated adjacency matrix
- 4. Compare the estimated adjacency matrix to the goldstandard precision matrix Σ^{-1} from which the data were generated

GGM vs Correlation Network

A Gaussian graphical model begins with the assumption an p-dimensional random vector of metabolite measurements that follows the multivariate normal distribution [4].

$$\mathbf{X} = (X_1, \dots, X_p) \sim MVN(\underline{\mu}, \mathbf{\Sigma})$$
(1)

In this setting, $\underline{\mu} = \underline{0}$ and Σ represents the between-metabolite covariance matrix. Under the MVN assumption, this framework allows us to estimate two different types of networks:

Correlation network (Edges from Σ)

- $X_i \perp X_j \iff \Sigma_{i,j} = 0$
- Edges correspond to pairwise dependence
- This marginal dependence may be able to be

Edge Recovery Performance

With three estimation algorithms and two scoring criteria, we studied a total of six network estimation approaches for each sparsity level. To assess the sensitivity and specificity of each algorithm and criterion combination, the following definitions were used (where Σ^{-1} is the gold-standard precision matrix for the simulation):

True Positive: an edge in Σ^{-1} with magnitude of conditional correlation > $\rho^* \approx 0.2$ that was detected by the estimation. (ρ^* is the threshold for significance testing of null hypothesis $\rho = 0$ at $\alpha = 0.05$ for a sample of size n = 100.) **True Negative:** an edge in Σ^{-1} with magnitude of conditional correlation exactly 0 that was not detected by the estimation.

False Positive: an edge detected in the estimation which has weight exactly 0 in Σ^{-1} .

False Negative: an edge not detected in the estimation that has absolute weight > ρ^* in Σ^{-1} .

Edges in the gold-standard precision matrix with absolute edge weight between 0 and ρ^* were not considered in this analysis.

explained by other metabolites in the network

GGM network (Edges from Σ^{-1})

- $X_i \perp X_j | \{ X_{k \neq i,j} \} \iff \Sigma^{-1}_{i,j} = 0$
- Edges correspond to conditional dependence
- This dependence is conditioned on the state of the rest of the network metabolites
- The observed relationship between two metabolites cannot be explained through any of the other metabolites in the network

Algorithms

- Meinshausen-Bühlmann (mb): uses penalized regression to model each individual metabolite on the others in the network [5]
- Correlation Thresholding (ct): applies a threshold to the correlation matrix
- Graphical LASSO (glasso): uses penalized regression to estimate a sparse inverse covariance matrix [2]

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 FPR (1–Specificity) FPR (1–Specificity) FPR (1–Specificity) FPR (1–Specificity) FPR (1–Specificity)

Low sparsity network

- Both CT approaches detected a very small number of edges and are not shown (TPR, FPR ≈ 0)
- StARS criterion has lower sensitivity and higher specificity than the RIC criterion for both the MB and glasso algorithms

Medium sparsity network

- Performance is comparable among all methods with the exception of CT-StARS
- CT-StARS detects a very small number of edges and is not shown

High sparsity network

- StARS criterion has higher sensitivity and lower specificity than RIC
- Difference in criterion has more impact than difference in algorithm

Application: CATHGEN

We used the three algorithms and two criteria to fit six estimated networks for a dataset of targeted metabolomic data from the CATHGEN Biorepository [9]. The estimated topologies varied depending on choice of algorithm. Not shown are the MB-StARS and CT-StARS estimated networks; almost no edges were estimated for these approaches.

Conclusion

Estimated GGMs can vary broadly depending on method, and this variability may depend on network topology. Cross-validation and sensitivity analyses are recommended.

References

- [1] A Rosato, L Tenori, M Cascante, PR De Atauri Carulla, VAP Martins Dos Santos, and E. Saccenti. From correlation to causation: analysis of metabolomics data using systems biology approaches. *Metabolomics*, (14(4)):37, 2018.
- [2] J Friedman, T Hastie, and R Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, (9(3)):432-41,

Scoring Criteria

- Rotation Information Criterion (ric): estimates optimal tuning parameter by permutation-based approach [6]
- Stability Approach to Regularization Selection (StARS): estimates optimal tuning parameter by subsampling approach [7]

Funding

Research reported in this poster was supported by the National Institutes of Health under award number 1R01HL122241-01A1. The table below shows the edge count for each approach.

	MB	CT	glasso
RIC	610	4530	2542
StAR	$S \mid 0$	1	6045

2018.

- [3] Roeder K Lafferty J Wasserman L Zhao T, Liu H. The huge package for high-dimensional undirected graph estimation in r. Journal of Machine Learning Research, (13):1059–1062, 2012.
- [4] Caroline Uhler. Gaussian graphical models: An algebraic and geometric perspective. 2017.
- [5] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the lasso. Annals of Statistics, 34:1436-1462, 2006.
- [6] Lysen Shaun. Permuted inclusion criterion: A variable selection technique. *Publicly Accessible Penn Dissertations*, 28, 2009.
- [7] Roeder K Liu H and Wasserman L. Stability approach to regularization selection for high dimensional graphical models. Advances in Neural Information Processing Systems, 2010.
- [8] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. *InterJournal*, Complex Systems:1695, 2006.
- [9] WE Kraus, CB Granger, MH SketchJr, MP Donahue, GS Ginsburg, ER Hauser, C Haynes, LK Newby, M Hurdle, ZE Dowdy, and SH Shah. A guide for a cardiovascular genomics biorepository: the cathgen experience. Journal of Cardiovascular Translational Research, 8(8):449-57, 2015.