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Covariance Matrix and Precision Matrix

Covariance matrix and precision matrix are two essential parts in
multivariate analysis since they represent marginal and conditional
dependence structures respectively.
Let X be multivariate normal with covariance matrix Σ, and the
precision matrix Ω is defined to be the inverse of the covariance
matrix Ω = Σ−1. For i 6= j ,

Σij = 0 if and only if Xi and Xj are marginally independent
Ωij = 0 if and only if Xi and Xj are conditionally independent

given all other variables

The estimation of high dimensional covariance/precision matrix based
on few sample observations is a difficult problem. Sample covariance
matrix is singular and noninvertible.
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Matched case-control Study

Case-control study: One of the observational study designs for
performing clinical research. Economical, quick to perform, and easy
to implement.
Matched case-control study: Match the cases and controls for
confounding factors.
Matched data are not randomly collected.
Problem: Recover the covariance/precision matrix of variables under
matched case-control design

Yukun Li, Raji Balasubramanian ENAR March 2021 3 / 18



Inverse probability weighting

A well-known technique used in controlling for selection biases in
non-experimental studies and in many missing data problems.
Create a pseudo population by giving a weight to each observation in
the case control sample.
Weight: inverse of sampling probability. Up-weight the observations
which have low probability of being in the case control sample, and
down-weight those that have high probability.

Yukun Li, Raji Balasubramanian ENAR March 2021 4 / 18



Method: Low Dimension

Covariance estimation: Sample covariance with inverse probability
weighting

Sipw =
1∑n

i=1 wi − 1

n∑
i=1

wi (Xi − µ̂∗)(Xi − µ̂∗)T (1)

where wi is weight for the i th subject, µ̂∗ = 1∑n
i=1 wi

∑n
i=1 wiXi is the

weighted sample mean.
Precision estimation: Inverse of estimated covariance

Ω̂ = S−1
ipw (2)
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Method: High Dimension

Given a set X of n i.i.d. vectors following N(µ,Σ), we have the
weighted log likelihood function

log f (X ;µ,Σ) = −
∑n

i=1 wi

2
log |Σ|−1

2

n∑
i=1

wi (Xi − µ)T Σ−1 (Xi − µ)+c

Adopting the idea from Bien & Tibshrirani (2010) and Friedman et al.
(2007), we can add lasso penalty to the likelihood function.

Covaraince matrix:

Σ̂ = argmaxΣ{− log detΣ− tr(S∗
ipwΣ

−1)− λ‖Σ‖1} (3)

Precision matrix:

Ω̂ = argmaxΩ{log detΩ− tr(S∗
ipwΩ)− λ‖Ω‖1} (4)

where S∗
ipw = 1∑n

i=1 wi

∑n
i=1 wi (Xi − µ)T (Xi − µ), and λ is the tuning

parameter
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Method: High Dimensional Covariance Matrix Estimation

Problem (3)

Σ̂ = argmaxΣ{− log detΣ− tr(S∗ipwΣ
−1)− λ‖Σ‖1}

This problem is not convex. According to Bien & Tibshrirani (2010),
it can be solved by majorize-minimize iteration

Σ̂(t) = argminΣ

[
tr

{(
Σ̂(t−1)

)−1
Σ

}
+ tr

(
Σ−1S∗ipw

)
+ λ‖Σ‖1

]
Then generalized gradient descent can be applied to solve this problem

Σ← S
{
Σ− t

(
Σ−1

0 −Σ−1S∗ipwΣ
−1) , λt} (5)

where S is the elementwise soft-thresholding operator defined by
S(A,B)ij = sign (Aij) (Aij − Bij)+.
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Method: High Dimensional Precision Matrix Estimation

Problem (4)

Ω̂ = argmaxΩ{log detΩ− tr(S∗ipwΩ)− λ‖Ω‖1}

Graphical Lasso (Friedman et al.(2007)) can be applied to solve this
problem by optimizing over each row and corresponding column of the
covariance matrix in a block coordinate descent fashion.
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Method: Weight estimation

Suppose the subjects in the cohort are divided into J strata based on Z
Randomly select n1 cases from the N1 cases in the cohort
Select controls by matching for strata J
The weight can be estimated by

ŵi1 = N1/n1

ŵi0 = N0j/n0j for control subject in stratum j

where
N1: number of case subjects in the cohort
n1: number of case subjects in the matched data
N0j : number of control subjects in stratum j in the cohort
n0j : number of control subjects in stratum j in the matched sample
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Simulation Study: Low Dimension Scenario

Cohort sample size N = 20000
Matching variable: Z = (Z1,Z2), where Z1 ∼ N(0, 1), Z2 ∼ Ber(0.5)

Variables of interest: X = (X1,X2, ...,X20)T ∼ N(µX |Z ,Cov(X |Z ))
where

µX |Z =

{
0.1 + αZ ∗ Z1 + 0.1 ∗ Z2 for X1, ...,X10

0 Others

and Cov(X |Z ) has 20% non-zero elements randomly selected from
U(-2, -1) or U(1, 2).
Case-control status Y

logit(Y ) = β0 +
10∑
i=1

0.5Xi + βZ ∗ Z1 + 0.2 ∗ Z2

Set βZ = 1.2 and αZ = {0.3, 0.5, 0.7} to investigate the effect of αZ .
β0: chosen to make the proportion of cases in the cohort is 20%
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Simulation Study: Low Dimension Scenario

Matching procedure
Cohort subjects are divided into 10 strata based on their propensity
scores P(Y = 1|Z1,Z2), which can be estimated by logistic regression;
Randomly select 500 cases from the cohort;
Match the cases with 500 controls according to the strata defined by
propensity scores;
Bin the adjacency strata if their # of controls

# of cases are greater than 50

We compare the following 4 covariance estimators to the true
covariance matrix of X :
Sample covariance of X from random samples : Srandom

Sample covariance of X from case-control samples: SCC

Sample covariance of X from matched case-control samples: SMCC

Proposed weighted covariance of X from matched case-control
samples: Sipw
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Simulation Study: Low Dimension Scenario

Compare the four estimates with the true covariance matrix of X

Cov(X ) = E (Cov(X |Z )) + Cov(E (X |Z ))

= Cov(X |Z ) + Cov(µX |Z )

Figure: Visualization of true Cov(X )
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Simulation Study: Low Dimension Scenario

Error metric:

Average Relative Bias =
1
p2

p∑
i

p∑
j

Σ̂ij −Σij

1 + abs(Σij)
(6)

For low dimensional setting, comparison of precision matrix estimators
can be directly obtained by inverting the covariance estimates.
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Simulation Result: Low Dimension Scenario

Figure: Covariance matrix estimation for low dimension scenario
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Effect of Binning

Bin the adjacency strata if their # of controls
# of cases are greater than 50, 25

and 12.5

Figure: Effect of binning when αZ = 0.7 and βZ = 1.2
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Effect of Thresholding

Thresholding can help to reduce the effect of extreme weights by
truncating them at a maximum allowable weight.
Choice of threshold: mean + 3/2/1*SD

Figure: Effect of thresholding when αZ = 0.7 and βZ = 1.2
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Conclusion

Proposed weighted estimator in low dimensional setting and a
likelihood-based estimation procedure in high dimensional setting
Simulation for low dimensional setting shows simple covariance
estimation from matched case control sample has significant bias, and
estimation from our proposed method has almost no bias for all
simulation scenarios.
Variance reduction methods are needed for our proposed method.
Simulation for high dimensional setting will be conducted.
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